Extracellular iron (II) can protect cells from hydrogen peroxide.

نویسندگان

  • S L Hempel
  • G R Buettner
  • D A Wessels
  • G M Galvan
  • Y Q O'Malley
چکیده

We hypothesized that exposure of cells to H2O2 plus Fe2+ would increase formation of cell-derived lipid peroxides that would inactivate prostaglandin H synthase, resulting in decreased prostaglandin synthesis. Therefore, we treated human endothelial cells with 0-100 microM H2O2 followed immediately by addition of 0-200 microM Fe2+. After oxidant exposure, cells were stimulated with 20 microM arachidonic acid to induce prostaglandin I2 (PGI2) synthesis. Adding 100 microM H2O2 prior to arachidonic acid decreased PGI2 synthesis more than 80%. However, to our surprise, the addition of Fe2+, in increasing amounts, progressively protected PGI2 synthesis against the harmful effects of H2O2. A ratio of one part H2O2 to two parts Fe2+ offered almost complete protection, whereas Fe3+ did not protect PGI2 synthesis from H2O2. We found that 100 microM H2O2 was not cytolytic; however, 250 microM H2O2 was cytolytic; Fe2+ protected against this cytotoxicity. In addition, extracellular Fe2+ prevented the rise in intracellular calcium caused by H2O2 and extracellular Fe2+ preserved intracellular glutathione in H2O2-exposed cells. Electron paramagnetic resonance spin trapping demonstrated that extracellular Fe2+ generated the hydroxyl free radical, HO. outside the cell. We speculate that extracellular Fe2+ protects the intracellular space from H2O2 by initiating the Fenton reaction outside the cell. This reductive cleavage of H2O2 generates HO. in the extracellular space, where much of the HO. will react with noncellular components, thereby protecting the cell interior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of ADH II Deficiency on the Intracellular Redox Homeostasis in Zymomonas mobilis

Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II), showed impaired homeostasis of the intracellular NAD(P)H during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobi...

متن کامل

Hydrogen peroxide and extracellular signal-related kinase 1/2 pathway regulate ferritin levels in retinal pigmented and lens epithelial cells

PURPOSE Iron plays a central role in the oxidative stress caused by hydrogen peroxide. The ubiquitous iron storage protein, ferritin, safely sequesters iron, reducing its ability to cause oxidative damage. Oxidative stress can activate mitogen-activated protein (MAP) kinase pathways with many downstream effects. The purpose of this study was to determine the effects of hydrogen peroxide on MAP ...

متن کامل

Catalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods

The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...

متن کامل

Direct interorganellar transfer of iron from endosome to mitochondrion.

Iron is a transition metal whose physicochemical properties make it the focus of vital biologic processes in virtually all living organisms. Among numerous roles, iron is essential for oxygen transport, cellular respiration, and DNA synthesis. Paradoxically, the same characteristics that biochemistry exploits make iron a potentially lethal substance. In the presence of oxygen, ferrous iron (Fe(...

متن کامل

Mechanisms of endothelial cell killing by H2O2 or products of activated neutrophils.

Interactions between rat pulmonary artery endothelial cells and hydrogen peroxide or toxic oxygen products from phorbol ester-activated human neutrophils result in endothelial cell killing defined by 51Cr release. It has been shown that this cytotoxic reaction can be blocked by the presence of catalase, iron chelators, or scavengers of the hydroxyl radical. Evidence shows that products from xan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 330 2  شماره 

صفحات  -

تاریخ انتشار 1996